The New Frontier of Microperimetry
“Microperimetry is attracting our attention more and more as a method that is superior to standard automated perimetry for visual function assessment.”

Microperimetry is a technology that allows concurrent analysis of structural and functional aspects of the retina. It combines fundus imaging, retinal sensitivity mapping and fixation analysis in one exam and has been used over a decade as a powerful tool to detect, describe and follow-up pathologies affecting the macular area. Its great advantage is the ability to track patients’ fixation activity while measuring visual field, hence eliminating errors caused by fixation losses.

Fixation assessment is unique to microperimetry and ensures correlation between microperimetric outcomes and subjective perception of visual quality.

"Visual acuity is unable to represent the functional impact of neovascular or atrophic AMD on daily-life activities. Limited information about retinal fixation, and presence and density of central scotoma in these patients is available. Conventional visual field examination is inadequate for the accurate functional evaluation when foveal function is compromised [...] Automatic microperimetry may overcome this limitation."

Company Profile

Our goal is to offer user-friendly diagnostic devices and high-value services that allow Eye Care Specialists to preserve patients’ sight and quality of vision, in particular by detecting preventable diseases.

CenterVue designs and manufactures highly automated medical devices for the diagnosis and management of ocular pathologies, including those that represent the leading causes of blindness.

Our goal is to offer user-friendly diagnostic devices and high-value services that allow Eye Care Specialists to preserve patients’ sight and quality of vision, in particular by detecting preventable diseases.

CenterVue is headquartered in Padova, Italy, with the US branch in San Jose, California. CenterVue is present in over 70 countries with its distribution network.
Presenting Maia

MAIA represents the latest advance in confocal microperimetry. Retinal images are acquired by Scanning Laser Ophthalmoscopy (SLO). An eye tracker allows accurate, real-time, compensation of eye movements. Luminance levels are compliant with existing standards (1000 asb.). MAIA is highly automated, very easy to use, non mydriatic and combines the best aspects of its predecessors.

Similarly to Standard Automated Perimetry (SAP), MAIA measures light sensitivity of the retina by projecting Goldmann III stimuli over different retinal locations within the field of view. The main difference and great advantage over SAP is that retinal sensitivity is measured while simultaneously imaging the retina in real time. Retinal images, created by SLO technology, are processed by an eye tracker to calculate and compensate eye shifts (fixation losses) occurring during visual field measurement, in both physiological and pathological conditions. Fixation analysis is the second, fundamental outcome of the Maia eye tracker.

MAIA performs different types of microperimetry tests with supra and full-threshold strategies, and follow-up test to monitor functional progression. Each exam provides a measure of retinal sensitivity and fixation analysis (stability and position of the Preferred Retinal Locus). The MAIA sensitivity scale is 0 to 36 dB.
Fixation Test

Fixation analysis

Fixation is the process of attempting to “look at” a selected visual target and consists of optically aligning a functional area of the retina to that target. In normal subjects the retinal area predominantly used for fixation is the fovea, whereas when pathology affects the central retina, fixation degrades and patients may use extra-foveal regions. MAIA provides accurate and objective information regarding retinal location and stability of a patient’s fixation. Such parameters are assessed by tracking eye movements 25 times / sec and by plotting the resulting distribution over the SLO image.

The region encompassed by these movements identifies the Preferred Retinal Locus (PRL) and describes the location of fixation, while their extension is an indication of fixation stability.

Fixation parameters are fundamental in describing retinal function and are as important prognostic factors as visual acuity and retinal sensitivity in patients with macular diseases.

Multi-fixation targets

MAIA is also able to project multiple fixation targets at selectable locations to help patients with central scotoma visualize the target during the sensitivity test. This new feature enhances the identification of the PRL and decreases the examination time in patients with highly unstable fixation.

Fixation is a critical aspect in the assessment of retinal function and plays a significant role in diagnosing and monitoring eye diseases. MAIA’s fixation test, through its advanced technology, provides clinicians with valuable information that can aid in the management of patients, especially those with macular diseases.

Great Ergonomic Advantages

Maia offers great ergonomic advantages in terms of easy interaction between the operator, the patient, and the device. Thanks to its Scanning Laser Ophthalmoscope (SLO), MAIA operates with a minimum pupil diameter of 2.5 mm, thus not requiring the use of dilating drops.

Ergonomic and motorized chin rest. Improved cleanability of the patient rest cushions thanks to the silicone material and detachable front rest. The system is entirely operated via the integrated 10.4” touch-screen with 1024x768 resolution. The patient push button is designed for improved ergonomics and can be hang on the system via a magnetic support. The integrated PC offers dual USB and Ethernet interfaces.
MAIA contains a reference database for the quantitative comparison of measured sensitivity values to those observed in normal subjects. MAIA provides a very detailed printout that encompasses all collected information.

Legends

1. **Clinic name**
2. **Example Printout - OD**
3. **Exam Info**
4. **Interplated sensitivity map over full SLO image**
5. **Fixation Plot over zoomed SLO image and PRL identification**
6. **Bivariate Contour Ellipse Area indices**
7. **Sensitivity values (dB) and PRL over zoomed SLO image**
8. **Color Code Percent Reduced Thresholds**
9. **Color Code Average Threshold (dB)**
10. **Histogram of Threshold values (log) compared with normal distribution (green)**
11. **Fixation graph depicting amplitude of eye movements vs. time**

Maia in the Low Vision Clinic

MAIA can be an important tool in the low vision clinic, particularly in patients with eccentric and unstable fixation due to large central scotoma. PRL outcome quantities residual visual function and helps explaining patients how to use more effectively their residual vision capabilities.

With the aid of the MAIA eye tracker, it is possible to map macular sensitivity even in cases of severe vision loss with poor fixation.

Thanks to the new dynamic multi-fixation target, Low Vision clinics are able to perform the MAIA examination using eccentric fixation targets. In addition, the ability to project multiple fixation targets help low vision specialists to better understand visual span in low vision patients.
Clinical Examples

Early AMD
Reduced retinal sensitivity in localized macular areas.

Severe AMD
The PRL has shifted over a low sensitivity area causing unstable fixation and visual discomfort.

Macular Edema
Peri-foveal PRL and partially preserved macular sensitivity may indicate positive prognosis following treatment.

Macular Pucker
Traction lines, clearly visible on the SLO image and localized functional losses explain reported visual discomfort.

Interpolated color map
Interpolated sensitivity maps showing localized functional defects. Scotoma is represented in black.

Central Geographic Atrophy
The PRL has shifted in the superior hemifield, with unstable fixation.

Stargardt’s disease
Multiple PRLs are visible, surrounding the central atrophic region.

Glucoma
Advanced stages of glaucoma may threaten central fixation. Maia can be used to assess the rate of disease progression.

Benefits, Features and Specifications

<table>
<thead>
<tr>
<th>BENEFITS</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive to functional changes due to macular pathologies even in the early stages</td>
<td>36 dB measurement range, 25 Hz eye tracker, 4 asb background, reference values on normal subjects</td>
</tr>
<tr>
<td>Easy interpretation</td>
<td>Comparison with reference values on normal subjects</td>
</tr>
<tr>
<td>Patient comfort</td>
<td>Test can be paused and automatically restarted at any time</td>
</tr>
<tr>
<td>Facilitates correct diagnostic decision</td>
<td>Overlay of structural and functional information</td>
</tr>
<tr>
<td>Highly repeatable</td>
<td>25 Hz eye tracking + high resolution confocal imaging</td>
</tr>
<tr>
<td>High quality imaging</td>
<td>Confocal SLO imaging (25 microns optical resolution)</td>
</tr>
</tbody>
</table>

Technical specifications

- **Fundus imaging:**
 - Line scanning laser ophthalmoscope
 - Field of view: 36° x 36°
 - Digital camera resolution: 1024 x 1024 pixel
 - Optical resolution on the retina: 25 microns
 - Optical source: infrared super luminescent diode (850 nm)
 - Imaging speed: 25 fps
 - Working distance: 33 mm

- **Fundus Perimetry:**
 - Projection field: 30° x 30°
 - Tracking speed: 25 Hz
 - Stimuli size: Goldmann III (26 arcmin)
 - Background luminance: 4 asb
 - Maximum luminance: 1000 asb
 - Stimuli dynamic range: 36 dB

- **Other features:**
 - Non mydriatic operation (minimum pupil diameter: 2.5 mm)
 - Auto-focus (-15D to +10D)
 - Automatic OD/OS recognition

- **Dimensions:**
 - Unit size: W 348 x H 580 x D 600 mm (13.7 x 22.8 x 23.6 in)
 - Unit weight: 23 kg (50.7 lbs)

- **Power requirement:**
 - Voltage: 100-240 VAC, 50-60 Hz, fuse 3.15 A (T type)
 - Power consumption: 300 VA

- **Laser classification:**
 - Class I laser product conforming with 60825-1 IEC:2007

- **Accessories:**
 - power cord, push-button, spare fuses, operating manual, dust cover, front lens cap, silicon head-rest, eye occluder

Specifications are subject to change without notice for improvement.
The best tool for detecting and monitoring retinal functional changes

Microperimetry provides important contributions to Eye Care Specialists for a precise understanding of the anatomy, physiology and functionality of the macula. This turns into enhanced prevention, more accurate diagnosis and better treatment.